3.353 \(\int \frac{a+b x^2}{x \sqrt{-1+c x} \sqrt{1+c x}} \, dx\)

Optimal. Leaf size=46 \[ a \tan ^{-1}\left (\sqrt{c x-1} \sqrt{c x+1}\right )+\frac{b \sqrt{c x-1} \sqrt{c x+1}}{c^2} \]

[Out]

(b*Sqrt[-1 + c*x]*Sqrt[1 + c*x])/c^2 + a*ArcTan[Sqrt[-1 + c*x]*Sqrt[1 + c*x]]

________________________________________________________________________________________

Rubi [A]  time = 0.0612882, antiderivative size = 46, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 29, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.103, Rules used = {460, 92, 205} \[ a \tan ^{-1}\left (\sqrt{c x-1} \sqrt{c x+1}\right )+\frac{b \sqrt{c x-1} \sqrt{c x+1}}{c^2} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*x^2)/(x*Sqrt[-1 + c*x]*Sqrt[1 + c*x]),x]

[Out]

(b*Sqrt[-1 + c*x]*Sqrt[1 + c*x])/c^2 + a*ArcTan[Sqrt[-1 + c*x]*Sqrt[1 + c*x]]

Rule 460

Int[((e_.)*(x_))^(m_.)*((a1_) + (b1_.)*(x_)^(non2_.))^(p_.)*((a2_) + (b2_.)*(x_)^(non2_.))^(p_.)*((c_) + (d_.)
*(x_)^(n_)), x_Symbol] :> Simp[(d*(e*x)^(m + 1)*(a1 + b1*x^(n/2))^(p + 1)*(a2 + b2*x^(n/2))^(p + 1))/(b1*b2*e*
(m + n*(p + 1) + 1)), x] - Dist[(a1*a2*d*(m + 1) - b1*b2*c*(m + n*(p + 1) + 1))/(b1*b2*(m + n*(p + 1) + 1)), I
nt[(e*x)^m*(a1 + b1*x^(n/2))^p*(a2 + b2*x^(n/2))^p, x], x] /; FreeQ[{a1, b1, a2, b2, c, d, e, m, n, p}, x] &&
EqQ[non2, n/2] && EqQ[a2*b1 + a1*b2, 0] && NeQ[m + n*(p + 1) + 1, 0]

Rule 92

Int[1/(Sqrt[(a_.) + (b_.)*(x_)]*Sqrt[(c_.) + (d_.)*(x_)]*((e_.) + (f_.)*(x_))), x_Symbol] :> Dist[b*f, Subst[I
nt[1/(d*(b*e - a*f)^2 + b*f^2*x^2), x], x, Sqrt[a + b*x]*Sqrt[c + d*x]], x] /; FreeQ[{a, b, c, d, e, f}, x] &&
 EqQ[2*b*d*e - f*(b*c + a*d), 0]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{a+b x^2}{x \sqrt{-1+c x} \sqrt{1+c x}} \, dx &=\frac{b \sqrt{-1+c x} \sqrt{1+c x}}{c^2}+a \int \frac{1}{x \sqrt{-1+c x} \sqrt{1+c x}} \, dx\\ &=\frac{b \sqrt{-1+c x} \sqrt{1+c x}}{c^2}+(a c) \operatorname{Subst}\left (\int \frac{1}{c+c x^2} \, dx,x,\sqrt{-1+c x} \sqrt{1+c x}\right )\\ &=\frac{b \sqrt{-1+c x} \sqrt{1+c x}}{c^2}+a \tan ^{-1}\left (\sqrt{-1+c x} \sqrt{1+c x}\right )\\ \end{align*}

Mathematica [A]  time = 0.0245972, size = 66, normalized size = 1.43 \[ \frac{a c^2 \sqrt{c^2 x^2-1} \tan ^{-1}\left (\sqrt{c^2 x^2-1}\right )+b \left (c^2 x^2-1\right )}{c^2 \sqrt{c x-1} \sqrt{c x+1}} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*x^2)/(x*Sqrt[-1 + c*x]*Sqrt[1 + c*x]),x]

[Out]

(b*(-1 + c^2*x^2) + a*c^2*Sqrt[-1 + c^2*x^2]*ArcTan[Sqrt[-1 + c^2*x^2]])/(c^2*Sqrt[-1 + c*x]*Sqrt[1 + c*x])

________________________________________________________________________________________

Maple [A]  time = 0.018, size = 62, normalized size = 1.4 \begin{align*}{\frac{1}{{c}^{2}} \left ( -\arctan \left ({\frac{1}{\sqrt{{c}^{2}{x}^{2}-1}}} \right ) a{c}^{2}+b\sqrt{{c}^{2}{x}^{2}-1} \right ) \sqrt{cx-1}\sqrt{cx+1}{\frac{1}{\sqrt{{c}^{2}{x}^{2}-1}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*x^2+a)/x/(c*x-1)^(1/2)/(c*x+1)^(1/2),x)

[Out]

(-arctan(1/(c^2*x^2-1)^(1/2))*a*c^2+b*(c^2*x^2-1)^(1/2))*(c*x-1)^(1/2)*(c*x+1)^(1/2)/(c^2*x^2-1)^(1/2)/c^2

________________________________________________________________________________________

Maxima [A]  time = 1.45888, size = 42, normalized size = 0.91 \begin{align*} -a \arcsin \left (\frac{1}{\sqrt{c^{2}}{\left | x \right |}}\right ) + \frac{\sqrt{c^{2} x^{2} - 1} b}{c^{2}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^2+a)/x/(c*x-1)^(1/2)/(c*x+1)^(1/2),x, algorithm="maxima")

[Out]

-a*arcsin(1/(sqrt(c^2)*abs(x))) + sqrt(c^2*x^2 - 1)*b/c^2

________________________________________________________________________________________

Fricas [A]  time = 1.49658, size = 122, normalized size = 2.65 \begin{align*} \frac{2 \, a c^{2} \arctan \left (-c x + \sqrt{c x + 1} \sqrt{c x - 1}\right ) + \sqrt{c x + 1} \sqrt{c x - 1} b}{c^{2}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^2+a)/x/(c*x-1)^(1/2)/(c*x+1)^(1/2),x, algorithm="fricas")

[Out]

(2*a*c^2*arctan(-c*x + sqrt(c*x + 1)*sqrt(c*x - 1)) + sqrt(c*x + 1)*sqrt(c*x - 1)*b)/c^2

________________________________________________________________________________________

Sympy [C]  time = 18.0023, size = 162, normalized size = 3.52 \begin{align*} - \frac{a{G_{6, 6}^{5, 3}\left (\begin{matrix} \frac{3}{4}, \frac{5}{4}, 1 & 1, 1, \frac{3}{2} \\\frac{1}{2}, \frac{3}{4}, 1, \frac{5}{4}, \frac{3}{2} & 0 \end{matrix} \middle |{\frac{1}{c^{2} x^{2}}} \right )}}{4 \pi ^{\frac{3}{2}}} + \frac{i a{G_{6, 6}^{2, 6}\left (\begin{matrix} 0, \frac{1}{4}, \frac{1}{2}, \frac{3}{4}, 1, 1 & \\\frac{1}{4}, \frac{3}{4} & 0, \frac{1}{2}, \frac{1}{2}, 0 \end{matrix} \middle |{\frac{e^{2 i \pi }}{c^{2} x^{2}}} \right )}}{4 \pi ^{\frac{3}{2}}} + \frac{b{G_{6, 6}^{6, 2}\left (\begin{matrix} - \frac{1}{4}, \frac{1}{4} & 0, 0, \frac{1}{2}, 1 \\- \frac{1}{2}, - \frac{1}{4}, 0, \frac{1}{4}, \frac{1}{2}, 0 & \end{matrix} \middle |{\frac{1}{c^{2} x^{2}}} \right )}}{4 \pi ^{\frac{3}{2}} c^{2}} + \frac{i b{G_{6, 6}^{2, 6}\left (\begin{matrix} -1, - \frac{3}{4}, - \frac{1}{2}, - \frac{1}{4}, 0, 1 & \\- \frac{3}{4}, - \frac{1}{4} & -1, - \frac{1}{2}, - \frac{1}{2}, 0 \end{matrix} \middle |{\frac{e^{2 i \pi }}{c^{2} x^{2}}} \right )}}{4 \pi ^{\frac{3}{2}} c^{2}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x**2+a)/x/(c*x-1)**(1/2)/(c*x+1)**(1/2),x)

[Out]

-a*meijerg(((3/4, 5/4, 1), (1, 1, 3/2)), ((1/2, 3/4, 1, 5/4, 3/2), (0,)), 1/(c**2*x**2))/(4*pi**(3/2)) + I*a*m
eijerg(((0, 1/4, 1/2, 3/4, 1, 1), ()), ((1/4, 3/4), (0, 1/2, 1/2, 0)), exp_polar(2*I*pi)/(c**2*x**2))/(4*pi**(
3/2)) + b*meijerg(((-1/4, 1/4), (0, 0, 1/2, 1)), ((-1/2, -1/4, 0, 1/4, 1/2, 0), ()), 1/(c**2*x**2))/(4*pi**(3/
2)*c**2) + I*b*meijerg(((-1, -3/4, -1/2, -1/4, 0, 1), ()), ((-3/4, -1/4), (-1, -1/2, -1/2, 0)), exp_polar(2*I*
pi)/(c**2*x**2))/(4*pi**(3/2)*c**2)

________________________________________________________________________________________

Giac [A]  time = 1.13846, size = 61, normalized size = 1.33 \begin{align*} -2 \, a \arctan \left (\frac{1}{2} \,{\left (\sqrt{c x + 1} - \sqrt{c x - 1}\right )}^{2}\right ) + \frac{\sqrt{c x + 1} \sqrt{c x - 1} b}{c^{2}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^2+a)/x/(c*x-1)^(1/2)/(c*x+1)^(1/2),x, algorithm="giac")

[Out]

-2*a*arctan(1/2*(sqrt(c*x + 1) - sqrt(c*x - 1))^2) + sqrt(c*x + 1)*sqrt(c*x - 1)*b/c^2